
OWASP Serverless Top 10

AWS Community Day NL

Tal Melamed
Sr. Director, Cloud Native Security Research

Tal.Melamed@ContrastSecurity.com

@4ppsec

mailto:tal.melamed@contrastsecurity.com

4ppsec

@ 4ppsec

talmelamed

tal.melamed@qu.edu

tal@appsec.it

Co-Founder & CTO
Acquired by Contrast Security, 2020

Head of Security Research
Acquired by CheckPoint, 2019

@ 4ppsec

@ 4ppsec

Serverless
Architecture

@ 4ppsec

Event-driven architecture

● Triggered via events
● Container spins up when required
● Terminates when code execution

Your code.

Your mistakes...

@ 4ppsec

● Read-only environment, except for /tmp

● Not wired to the internet*

● Data is temporary**

● Code reside in environment

● Keys are available as environment variables

AWS Lambda - Security Aspects

@ 4ppsec

OWASP Serverless Top 10

● Current project state:

○ Interpretation of Top 10

○ Open Data Call: https://appsec.it/serverless-call

● Goal: Serverless-tailored Top 10

https://owasp.org/www-project-serverless-top-10/

@ 4ppsec

https://appsec.it/serverless-call
https://owasp.org/www-project-serverless-top-10/

Event Injection

● Multiple, uncontrolled entry points

● Traditional injections (cmdi, no/sqli, etc).

● Per-language Code Injection

● New Injections (MQTT, Email, Pub/Sub)

● Impact depends on the function permissions

@ 4ppsec

Injection Entry Points
REST APIs

3rd-Party Application

Cloud Storage (S3)

Authentication Services

Logs and Events

IoT

Voice (Alexa)

Email

SNS

Code pipelines

@ 4ppsec

Event Injection - Best Practices

● Never trust, pass or make any assumptions regarding input
and its validity from any resource

● Use positive or “allowlist” input validation when possible

○ Api Gateway allow configuring json model for requests

● Consider all event types and entry points into the system

● Run functions with the least privileges required to perform the
task to reduce attack surface

@ 4ppsec

Broken Authentication

● Functions are Stateless

● Multiple entry points, services, events and triggers

● No continuous flow

@ 4ppsec

Broken Authentication - Best Practices

Apply the zero-trust principle to your code

● Use authentication services whenever possible

● Access tokens (e.g., JWT) can include signed custom data

● If necessary, store a “state” OOB

● Perform input validation and run with “Least Privileges”

@ 4ppsec

Sensitive Data Exposure

● Same as any other cloud-based data

● Common serverless scenarios:

○ Data under /tmp

○ Sensitive data in environment variable

○ Sensitive data in an open bucket

○ Source code is also in the environment

@ 4ppsec

Sensitive Data Exposure - Best Practices

● Whenever possible, delete /tmp after use

● Use KMS to encrypt environment variable/sensitive data

● AWS Secret manager (or Parameter Store)

● Make sure your Buckets and other resources are set with secure configuration

● Use designated tools (e.g., AWS Macie) to identify sensitive data

● Run as “Least Privilege” to reduce access to sensitive data

@ 4ppsec

Over-privileged Functions

● Over privileged functions

● More than 90% are misconfigured

● Impact of other vulnerabilities depends on the permission
given to the function

○ In extreme cases - full cloud account takeover

@ 4ppsec

Resource-Based IAM

*
PutItem

@ 4ppsec

Over-privileged Functions - Best Practices

● Review each resource and apply least privileges
● Automate!

@ 4ppsec

Vulnerable Dependencies

● Using dependencies which are insecure
● Very common
● Functions may have 100 lines of code, but they bring

everything with them

@ 4ppsec

Vulnerable Dependencies - Best
Practices

● Scan your dependencies before deploying into production
● Open-source, 3r-party
● Use secure versions, replace library or apply patch

@ 4ppsec

Insufficient Logging & Monitoring

● More difficult than traditional web applications
● We don’t own the infrastructure - where to deploy?
● Logs exist, but we need to know how and what to extract.
● Even if we do:

○ with 1M invocations - how can we learn anything?

@ 4ppsec

Sump-up
Event Injection

Broken Authentication
Sensitive Data Exposure

Over-Privileged Functions
Vulnerable Dependencies

Insufficient Logging & Monitoring
Open Resources

DoW / DoS
Insecure Shared Space

Insecure Secret Management

@ 4ppsec

Contrast Serverless

@ 4ppsec

All rights reserved. ©2022 Contrast Security, Inc.

https://www.contrastsecurity.com/developer

github.com/owasp/dvsa
@DVSAowasp

! NOT in PRODUCTION !

https://owasp.org/www-project-dvsa/
@ 4ppsec

https://owasp.org/www-project-dvsa/

Company Confidential. Internal Use Only. ©2022 Contrast Security, Inc.

Thank you

Tal.Melamed@ContrastSecurity.com

@ 4ppsec

